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Artificial neural networks (ANNs) were successfully developed for the modeling and prediction
of normalized polarity parameter (EN

T ) in binary mixed solvent systems at various temperatures
and compositions. A three-layered feed forward ANN with back-propagation of error was
generated using five parameters as inputs and its output is EN

T . It was found that a properly
selected and trained neural network could fairly represent the dependence of normalized
polarity parameter on temperature and composition. For the evaluation of the predictive
power of the generated ANN, an optimized network was applied for prediction of the EN

T
values in the prediction set, which were not used in the modeling procedure. Correlation
coefficient (R) and root mean square error for prediction set are 0.9961 and 0.01187, respec-
tively. The maximum value of IPD (individual percent deviation) for EN

T values in the prediction
set is 5.116%. The results show non-linear dependence of EN

T to temperature and composition
in binary mixed solvent systems is significant.

Keywords: Artificial neural networks; Solvatochromic parameters; Normalized polarity
parameter; Binary mixed solvent systems

1. Introduction

The energetic level of molecules may be modified by interactions with surrounding
molecules and it may be difficult to relate chemical properties to molecular structures
[1–7]. The solvent effects play a key role in many chemical and physical processes in
solutions. The strong influence of solvent on chemical and physical processes (reaction
rates, selectivity, chemical equilibria, position and intensity of spectral absorption
bands and liquid chromatographic separations) has been well established [1]. The
study of solute–solvent interactions in binary mixed solvent systems is more complex
than in pure solvents. On the one hand, the solute can be preferentially solvated by
any of the solvents present in the mixture. On the other hand, solvent–solvent interac-
tions can strongly affect solute–solvent interactions [8–14]. The use of solvatochromic
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indicators is a suitable method for studying solute–solvent interactions, since the tran-
sition energy of the indicators depends on the solvation’s sphere composition and prop-
erties [1,15]. The solvatochromic parameter ET(30) is calculated from the maxima of
absorbance of the betaine dye, expressed in wavenumber as kK (1 kK¼ 1000 cm�1).
It was proposed by Reichardt for measuring empirically the polarity of solvents [15].
Solvatochromic parameters are demonstrated to be successful in correlating a wide
range of chemical and physical properties involving solute–solvent interactions as
well as biological activities of compounds [1]. Normalized polarity parameter (EN

T ) in
reference to tetramethylsilane (TMS) and water is recommended instead of ET(30) [15]:

EN
T ¼

ET ð30ÞSolvent � ET ð30ÞTMS

ET ð30ÞWater � ET ð30ÞTMS

ð1Þ

Determination of EN
T in all possible solvent compositions and temperatures in binary

mixed solvent systems by experiments is hardly possible, because an infinite number
of different solvent compositions can be prepared for particular binary solvent systems
and also it is time consuming, since there is an infinite number of solvent compositions
and temperatures that the values of EN

T are known. For these reasons the prediction of
solvatochromic parameters in binary mixed solvent systems based on a minimum
number of experiments provides a useful computational tool. There are correlations
between normalized polarity parameters of pure solvents and their molecular structures
[16,17], but there is not any method for predicting EN

T at various temperatures and
compositions in binary mixed solvent systems.

Artificial neural networks (ANNs) have become popular due to their success where
complex non-linear relationships exist amongst data [18–20]. ANNs are biologically
inspired computer programs designed to simulate the way in which the human brain
processes information [19,20]. ANNs gather their knowledge by detecting the patterns
and relationships in data and learn (or are trained) through experience, not from pro-
gramming. There are many types of neural networks designed by now and new ones are
invented every week. The behavior of a neural network is determined by transfer func-
tions of its neurons, by learning rule and by the architecture itself [19,20]. An ANN is
formed from artificial neuron or processing elements (PE), connected with coefficients
(weights), which constitute the neural structure and are organized in layers. The first
layer is termed the input layer and the last layer is the output layer. The layers of
neurons between the input and output layers are called hidden layers. The wide
applicability of ANNs stems from their flexibility and ability to model non-linear
systems without prior knowledge of an empirical model. Neural networks do not
need an explicit formulation of the mathematical or physical relationships of the
handled problem. These give ANNs an advantage over traditional fitting methods
for some chemical application. For these reasons, in recent years, ANNs have been
used for a wide variety of chemical problems such as simulation of mass spectra, ion
interaction chromatography, aqueous solubility and partition coefficient, simulation
of nuclear magnetic resonance spectra, prediction of bioconcentration factor and
prediction of various physico-chemical properties of compounds [21–32].

In this work, for inspection of non-linear relations of normalized polarity parameter
with temperature and composition in binary mixed solvent systems, an ANN model,
for the first time, was generated for the prediction of EN

T values in various temperatures
and compositions and the results were compared with the experimental values.
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2. Theory

A detailed description of theory behind a neural network has been adequately described
by different researchers [18–20]. There are many types of neural network architectures,
but the type that has been most useful for QSAR/QSPR studies is the multilayer
feed-forward network with back-propagation (BP) learning rule [20]. The numbers
of neurons in the input and output layers are defined by the system’s properties.
The number of neurons in the hidden layer could be considered as an adjustable
parameter, which should be optimized. The input layer receives the experimental or
theoretical information. The output layer produces the calculated values of dependent
variable. The use of ANNs consists of two steps: ‘‘training’’ and ‘‘prediction’’. In the
training phase, the optimum structure, weight coefficients and biases are searched
for. These parameters are found from a training data set. After the training phase,
the trained network can be used to predict (or calculate) the outputs from a set of
inputs. ANNs allow one to estimate relationships between input variables and one or
several output dependent variables. Information from inputs is fed forward through
the network to optimize the weights between neurons. Optimization of the weights
is made by BP of the error during the training or learning phase. The ANN reads
the input and target values in the training data set and changes the values of the
weighted links to reduce the difference between the calculated output and target
values. The error between output and target values is minimized across many training
cycles until the network reaches a specified level of accuracy. If a network is left to train
for too long, however, it will overtrain and will lose the ability to generalize [31].

3. Experimental

3.1. Data set

A reliable database is critically important for the training of ANNs. Fourteen binary
solvent systems including mixtures of methanolþ propan-1-ol, propan-1-olþ
acetonitrile, dimethylsulfoxideþ 2-methylpropan-2-ol, dimethylsulfoxideþ propan-
2-ol, dimethylsulfoxideþmethanol, dimethylsulfoxideþH2O, acetonitrileþ 2-methyl-
propan-2-ol, acetonitrileþ propan-2-ol, acetonitrileþmethanol, acetonitrileþH2O,
nitromethaneþ 2-methylpropan-2-ol, nitromethaneþ propan-2-ol, nitromethaneþ
methanol, nitromethaneþH2O, that the EN

T values at various temperatures and compo-
sitions are available in literature have been used [33,34]. The data set was randomly
divided into three groups: a training set, a validation set and a prediction set consisting
of 190, 54 and 54 data, respectively. The training and validation sets were used for the
model generation and the prediction set was used for the evaluation of the generated
model, because a prediction set is a better estimator of the ANN generalization ability
than a monitoring (validation) set [35].

3.2. Neural network generation

The specification of a typical neural network model requires the choice of the type
of inputs, the number of hidden layers, the number of neurons in each hidden layer
and the connection structure between the inputs and the output layers. The inputs
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of ANNs are normalized polarity parameters and mole fractions of constituents of
binary mixed solvent system and temperature. A three-layer network with a sigmoidal
transfer function was designed. The initial weights were randomly selected between 0
and 1. Before training, the input and output values were normalized between 0.1 and
0.9. The optimization of the weights and biases was carried out according to
Levenberg–Marquardt algorithms for BP of error, which, although requiring far
more extensive computer memory, is significantly faster than other algorithms based
on gradient descent [36]. For evaluation of the prediction power of the network, the
trained ANN was used to predict EN

T values of the data set included in the prediction
set. The performances of training, validation and prediction of ANNs are evaluated by
the mean percentage deviation (MPD) and root-mean square error (RMSE), which are
defined as follows:

MPD ¼
1

N

XN
i¼1

ðP exp
i � P cal

i Þ

Pexp
i

����
���� ð2Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

ðP exp
i � P cal

i Þ
2

N

vuut ð3Þ

where P exp
i and P cal

i are experimental and calculated values of EN
T with the ANN model

and N denotes the number of data points.
Individual percent deviation (IPD) is defined as follows:

IPD ¼ 100�
P exp
i � P cal

i

P exp
i

����
���� ð4Þ

The processing of the data was carried out on an Intel Pentium III processor, 800 MHz
PC with 256MB of RAM in Windows XP environment using Matlab 6.5 [37].
The neural networks were implemented using Neural Network Toolbox Ver. 4.0 for
Matlab [38].

4. Results and discussion

There are no rigorously theoretical principles for choosing the proper network topol-
ogy, so different structures were tested in order to obtain the optimal hidden neurons
and training cycles [39]. Before training the network, the number of nodes in the
hidden layer was optimized. In order to optimize the number of nodes in the hidden
layer, several training sessions were conducted with different numbers of hidden
nodes (from one to fifteen). The root mean squared error of training (RMSET) and
validation (RMSEV) sets were plotted versus the number of iterations for a different
number of neurons at the hidden layer and the minimum value of RMSEV was
recorded as the optimum value. The plot of RMSET and RMSEV versus the number
of nodes in the hidden layer has been shown in figure 1. It is clear that ten nodes in
the hidden layer is the optimum value.
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This network consists of five inputs (including normalized polarity parameters and
mole fractions of constituents of mixture and temperature) and one output for EN

T .
Then an ANN with architecture 5-10-1 was generated. It is noteworthy that training
of the network was stopped when the RMSEV started to increase i.e. when overtraining
begins. The overtraining causes the ANN to lose its prediction power [31]. Therefore,
during training of the networks, it is desirable that iterations are stopped when over-
training begins. To control the overtraining of the network during the training proce-
dure, the values of RMSET and RMSEV were calculated and recorded to monitor
the extent of the learning in various iterations. Results obtained showed that after
1275 iterations the value of RMSEV started to increase and overfitting began.

The generated ANN was then trained using the training set for the optimization of
the weights and biases. For the evaluation of the predictive power of the generated
ANN, an optimized network was applied for prediction of the EN

T values in various
binary mixed solvent systems at different temperatures and compositions in the predic-
tion set, which were not used in the modeling procedure. The calculated values of the
EN
T at various temperatures and compositions for training, validation and prediction

sets using the ANN model have been plotted versus the experimental values of it in
figure 2.

Figure 3 demonstrates the plot of the calculated values of EN
T at various temperatures

and compositions versus the experimental values of it for the prediction set.
As expected, the calculated values of EN

T are in good agreement with those of the
experimental values. The correlation equation for all of the calculated values of EN

T
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Figure 1. Plot of RMSE for training and validation sets versus the number of nodes in hidden layer.
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Figure 2. Plot of the calculated values of EN
T from the ANN model versus the experimental values of it for

total set of data.
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Figure 3. Plot of the calculated values of EN
T from the ANN model versus the experimental values of it for

prediction sets.
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from the ANN model and the experimental values is as follows:

EN
T ðcalÞ ¼ 0:99650EN

T ðexpÞ þ 0:00195

R2 ¼ 0:9930; MPD ¼ 1:5917; RMSE ¼ 0:01046; F ¼ 42558:43
ð5Þ

Similarly, the correlation of EN
T ðcalÞ values versus EN

T ðexpÞ in the prediction set gives
equation (6):

EN
T ðcalÞ ¼ 1:00864EN

T ðexpÞ � 0:00553

R2 ¼ 0:9922; MPD ¼ 2:2573; RMSE ¼ 0:01187; F ¼ 6604:16
ð6Þ

The plot of IPD for EN
T values in the prediction set versus the experimental values of it

has been illustrated in figure 4. The results demonstrate that the maximum value of IPD
for EN

T values in the prediction set is 5.116%.
As can be seen, the model did not show proportional and systematic error, because

the slope (a¼ 1.00864) and intercept (b¼ 0.00553) of the correlation equation are not
significantly different from unity and zero, respectively and the propagation of errors
in both sides of zero is random (figure 4).

Table 1 compares the results obtained using the ANN model. The correlation coeffi-
cient (R), RMSE, MPD and F-value of the model for total, training, validation and
prediction sets show the potential of the ANN model for prediction of EN

T values in
binary mixed solvent systems at various temperatures and compositions.
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Figure 4. Plot of the IPD (individual percent deviation) for calculated values of EN
T from the ANN model

versus the experimental values of it for prediction sets.
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As a result, it was found that a properly selected and trained neural network could
usefully represent the dependence of the normalized polarity parameter on tempera-
tures and composition in binary mixed solvent systems. Then the optimized neural
network could simulate the complicated non-linear relationship between EN

T values
of binary mixed solvent systems and EN

T of pure solvents, mole fractions of solvents
and temperature.
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